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Abstract

Spectral element methods are developed for solving transient flows of viscoelastic fluids. The fluids are modeled

using the upper-convected Maxwell and Oldroyd B constitutive relationships. Several temporal schemes for dealing

with the time dependent nature of the problems are considered. The computation associated with each time step

comprises an explicit treatment of the convection and deformation terms and an implicit treatment of the linear terms.

The generalized three field Stokes problem generated in the latter is solved using a nested preconditioned conjugate

gradient method. The performance of a number of preconditioners is investigated. A modified formulation of the

Stokes problem is presented that ensures a unique pressure approximation with zero mean is obtained at each time step.

The performance of the schemes and models when applied to the benchmark problem of start-up of plane Poiseuille

flow is investigated.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Viscoelastic fluids are examples of a broader class of fluids called non-Newtonian fluids. Newtonian
fluids are characterized by the assumption that the extra-stress tensor is a linear isotropic function of the

components of the velocity gradient. In the case of an incompressible fluid this leads to the Navier–Stokes

equations. One can then define a non-Newtonian fluid as one whose behaviour cannot be described on the

basis of the Navier–Stokes equations. Non-Newtonian fluids abound in nature and industry and this ac-

counts for the interest in their flow properties and behaviour.

The governing equations resulting from a macroscopic description of a viscoelastic fluid comprise the

conservation equations of mass and momentum together with a differential or integral constitutive equation
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relating the stress to the strain. Differential constitutive models such as the upper-convected Maxwell

(UCM), Oldroyd B and Phan-Thien/Tanner models, for example, are nonlinear and this property has a

considerable impact on the performance and stability of numerical methods. The degree of nonlinearity of
the governing system of partial differential equations may be quantified in terms of a dimensionless number,

We, known as the Weissenberg number which can be viewed as a measure of the memory of the fluid. Most

numerical algorithms fail to converge above a critical value of this parameter when conventional closed

form constitutive models such as the UCM or Oldroyd B models, for example, are used.

Over the last 20 years significant progress has been made in the development of reliable numerical

methods for solving steady viscoelastic flow problems (see the monograph of Owens and Phillips [24], for

example). On a range of benchmark problems there has been agreement across a range of numerical

methods for particular models in terms of global quantities such as the drag on a sphere or cylinder in a
viscoelastic medium. Stabilization techniques have been used to remove numerical instabilities in many

instances in order to extend the range of Weissenberg numbers over which converged numerical solutions

are obtained. One such technique is the elastic viscous split stress (EVSS) formulation, developed by Perera

and Walters [25], in which a change of variables is introduced with the purpose of increasing the ‘ellipticity’

of the momentum equation and, therefore, the stability of the discretization. Other successful stabilization

techniques are described in Owens and Phillips [24]. These methods have been shown to work well for

steady problems. However, they may pollute the accuracy of the transient solution to unsteady problems

and for this reason they are not used in the present study.
In the context of spectral methods, Fi�etier and Deville [8] have explored the use of stabilization tech-

niques such as the discrete EVSS (DEVSS) method of Gu�enette and Fortin [13] and the filtering method of

Mullen and Fischer [23]. However, these techniques only had limited success in increasing the critical value

of We. Furthermore, the authors were concerned that the use of stabilization techniques could prevent a

detailed investigation into the onset and development of physical instabilities that are observed experi-

mentally (see Smith et al. [31], for example).

Much theoretical and numerical work has been performed with respect to the flow of UCM and Oldroyd

B fluids in a planar channel. In the 1970s, Porteous and Denn [26], Ho and Denn [14] and later Lee and
Finlayson [18] and Larson [17] performed linear stability analyses of this flow.

Porteous and Denn [26] performed a linear stability analysis of the plane Poiseuille flow of a UCM fluid

at high Reynolds numbers. Their calculations showed that with increasing fluid elasticity there is a sharp

decrease in the Reynolds number at which fully-developed laminar flow breaks down. Thus, elasticity is

destabilizing in the inertial regime. However, in the low Reynolds number regime the linear stability

analysis of Ho and Denn [14] has shown that this flow is stable to infinitesimal perturbations. Thus, in the

creeping flow limit the UCM fluid is linearly stable.

In a more recent paper Sureshkumar and Beris [32] used an Arnoldi algorithm, which computes a group
of the most unstable eigenmodes, to show that the addition of solvent viscosity considerably reduced the

destabilizing effect of elasticity found by Porteous and Denn [26] for the UCM fluid in the inertial regime.

They also commented on the dire consequences of inadequately resolving the continuous eigenmodes. For a

given mesh the error in the approximation of these eigenmodes was shown to increase linearly with the

Weissenberg number. Therefore, at relatively large values of We these modes could give rise to artificial

instabilities if insufficient spatial refinement is used in the computations.

Wilson et al. [34] studied the structure of the spectrum for creeping flow of both UCM and Oldroyd B

fluids. The addition of solvent viscosity is found to increase the complexity of the eigenspectrum. Although
the authors were not able to prove that inertialess plane Poiseuille flow is linearly stable for all values of the

Weissenberg number, no unstable eigenvalues were observed. However, poorly resolved modes of the

continuous spectrum can produce spurious instabilities. The problem of under-resolution of the continuous

part of the spectrum for UCM and Oldroyd B models and its impact on the generation of spurious in-

stabilites for plane Couette flow was studied by Keiller [16]. He showed that, since the continuous part of
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the spectrum scales linearly with both wavenumber kx and the order of the spectral approximation N , the

critical Weissenberg number will scale with the aspect ratio of the mesh elements kx=N when the under-

resolved part of the continuous spectrum is causing the flow to appear unstable. He also showed that for
calculations with the UCM model, the addition of a small amount of solvent viscosity could stabilize the

spurious modes.

Atalik and Keunings [1] performed a nonlinear analysis of the evolution of two-dimensional distur-

bances for plane Poiseuille flow of the Giesekus fluid, which includes the UCM and Oldroyd B fluids as

special cases, in the low and high Reynolds number regimes. The numerical scheme of Atalik and Keunings

is based on a spectral discretization in space and a Crank–Nicolson/Adams–Bashforth discretization in

time. The authors noted that the linear operator describing the time evolution of infinitesimal disturbances

is non-normal for this problem. Thus, although all the eigenvalues of the two-dimensional linear operator
have negative real parts, so that any infinitesimal disturbance will ultimately decay, transient growth of the

disturbances is possible. If the intermediate growth is significant enough the disturbances that are misfit to

the eigendirections of the linear stability operator will interact in a nonlinear fashion and eventually drive

the system to a nonlinear instability. In the inertial regime they showed that finite amplitude periodic waves

develop beyond a critical Reynolds number. Increasing the elasticity number has a destabilizing effect at

first followed by restabilization. For Reynolds numbers of the order of 10�1 they showed that two-

dimensional finite amplitude disturbances appear to decay when the ratio of retardation to relaxation times

for an Oldroyd B fluid exceeds 10�2 but that for smaller values of this ratio finite amplitude waves can
develop.

Other pertinent issues such as the mathematical type of the equations, loss of evolution and the high

Weissenberg number problem, for example, are discussed in Owens and Phillips [24], Renardy et al. [27] and

Renardy [28–30]. More recently, Lozinski and Owens [19] have derived an energy estimate for the velocity

and stress components for both inertial and creeping flows of an Oldroyd B fluid. They explained that

conventional discretization schemes for the Oldroyd B model may violate the energy estimate and deliver

an approximation that fails to respect important properties of the continuous problem. A novel numerical

scheme that respects the energy estimate and guarantees satisfaction of key properties of the model was
developed and implemented by the authors.

In the analysis of the standard weak formulation of the Stokes problem defined in some bounded do-

main X it can be shown that a unique pressure solution exists in L2
0ðXÞ, the subspace of L2ðXÞ containing

functions with zero mean value. To construct a conforming discrete pressure space one would need to

ensure that all the trial and test functions individually satisfy the zero volume condition. This is not done in

practice due to the constraints of the interpolants that must be imposed. In this paper, an alternative

formulation of the Stokes problem is presented that does not require the pressure to belong to L2
0ðXÞ. The

continuity equation is suitably modified by adding a multiple of the mean value of the pressure to the right-
hand side. One can then show that there exists a unique pressure solution to this problem in L2ðXÞ and that

this solution possesses a zero mean value over X. The alternative formulation also results in a better

conditioned Uzawa operator. In fact, the operator is positive definite whereas it is positive semi-definite in

the standard formulation. Obviously, this has important consequences for its inversion using iterative

methods.

The paper is organized as follows. In Section 2 the governing equations for an Oldroyd B fluid are

presented. The transient analytical solution for Poiseuille flow in a planar channel is given in Section 3. The

transient discretization of the governing equations is considered in Section 4 and the semi-discrete equa-
tions are derived. The spatial discretization is described in Section 5 and important features of the spectral

element method are introduced. The application of the conjugate gradient method to solve the discrete

equations at each time step and the performance of a number of preconditioners are also described in

Section 5. Numerical results are presented and discussed in Section 6 before concluding remarks are made

in Section 7.
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2. Governing equations

The equations governing the flow of an Oldroyd B fluid comprise the field equations, or conservation
equations of mass and momentum, and a rheological equation of state, or constitutive equation, relating

the stress and strain. The constitutive equation for an Oldroyd B fluid is nonlinear which means that, unlike

the corresponding situation for a Newtonian fluid, the stress cannot be eliminated from the system of

equations. Therefore, one has to solve for the extra-stress tensor in addition to the velocity and pressure.

The first field equation is the mathematical statement of the conservation of mass for an incompressible

fluid. It is given by

r � u ¼ 0: ð1Þ

The second field equation is the mathematical statement of the conservation of momentum and reads

q
ou

ot

�
þ u � ru

�
¼ �rp þr � T; ð2Þ

where q is the density of the fluid, p is the pressure, and T is the extra-stress tensor. The contents of the

bracket on the left-hand side of (2) are known as the material derivative of u. When inertia is neglected, the
material derivative is set to zero, and the Navier–Stokes equations reduce to the Stokes equations. To relate

the extra-stress tensor to the rate-of-deformation tensor, a constitutive equation is needed. In the Navier–

Stokes and the Stokes equations, the constitutive equation is the Newtonian stress relation

T ¼ 2gd; ð3Þ

where g is the viscosity and d is the rate-of-deformation tensor, given by

d ¼ 1
2
ðruþ ðruÞTÞ: ð4Þ

Note that, in the above system of equations, pressure is determined up to an arbitrary constant.
2.1. The Oldroyd B constitutive model

For viscoelastic fluids, the linear stress relation (3) is no longer valid. The simplest model, in terms of
mathematical complexity, is the UCM model, in which the relation between the extra-stress tensor and the

rate-of-deformation tensor, is given by

Tþ k1T
r
¼ 2gd: ð5Þ

In this equation, k1 is the relaxation time of the fluid, and T
r
is the upper convected derivative of the extra-

stress tensor, defined by

T
r
¼ oT

ot
þ ðu � rÞT�ru � T� T � ðruÞT: ð6Þ

The first two terms in (6) comprise the material derivative of the extra-stress tensor. The two other terms in

Eq. (6) are the deformation terms. The presence of these terms ensures that the principle of coordinate

invariance holds, i.e., the relationship between the stress tensor and the deformation history does not

depend on the particular coordinate system used for the description.

The nonlinear upper-convected derivative introduces a hyperbolic component to the set of equations.

The governing set of partial differential equations for a UCM fluid is of mixed hyperbolic/elliptic type. At
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high Weissenberg numbers, the nonlinear upper-convected derivative becomes dominant. This hyperbolic

part of the equations gives rise to mathematical and numerical problems. Numerical techniques can be

applied to stabilize the UCM model. In this paper, none of these techniques are adopted.
In the case of the Oldroyd B model a decomposition of the extra-stress tensor into solvent and polymeric

parts introduces a diffusion term into the momentum equation. This decomposition has a stabilizing in-

fluence on the performance of numerical discretization schemes. The Oldroyd B model is given by

Tþ k1T
r
¼ 2gðdþ k2d

r
Þ: ð7Þ

The retardation time k2 may be seen as a measure of the time the material needs to respond to deformation.

The extra-stress tensor can be written in terms of polymeric and viscous contributions as follows:

T ¼ sþ 2g2d: ð8Þ

The viscosity may be expressed as a sum of its polymeric contribution g1, and its viscous contribution g2.
The retardation and relaxation times, and the viscosity contributions are related through

k2
k1

¼ g2
g1 þ g2

: ð9Þ

The equations can now be rewritten in terms of the polymeric contribution to the extra-stress tensor. The

conservation of mass and momentum, and the constitutive equation now read:

r � u ¼ 0; ð10Þ
q
ou

ot

�
þ u � ru

�
¼ �rp þr � sþ g2r2u; ð11Þ
sþ k1s
r ¼ 2g1d: ð12Þ

The Oldroyd B model reduces to the UCM model if k2 or, equivalently, g2 is equal to zero. Both models

predict a positive first normal stress difference and a zero second normal stress difference, which is in

qualitative agreement with experimental data for Boger fluids [2]. However, they may both predict un-

bounded stress growth, as a result of the possibility of generating infinite extensional viscosity.

It can be shown that the stress tensor sA ¼ sþ ðg1=k1ÞI is positive definite. This is an important property

of the Oldroyd B model. The numerical scheme of Lozinski and Owens [19] ensures that the discrete an-

alogue of this tensor preserves this property automatically.
2.2. Non-dimensional equations

In terms of non-dimensional variables, the governing set of equations for the Oldroyd B model becomes:

r � u ¼ 0; ð13Þ
Re
ou

ot

�
þ u � ru

�
¼ �rp þr � sþ br2u; ð14Þ
sþ Wes
r ¼ 2ð1� bÞd: ð15Þ
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The factor b, the Reynolds number and the Weissenberg number are given by

b ¼ k2
k1

; Re ¼ qUL
g

; We ¼ k1U
L

; ð16Þ

where U and L denote a characteristic velocity and a characteristic length, respectively. When b ¼ 0 (which

implies k2 ¼ 0), this set of equations reduces to the governing equations for the UCM model.
3. Poiseuille flow in a planar channel

The benchmark problem chosen in this study is plane Poiseuille flow in a channel bounded by two

parallel fixed plates. This problem has been chosen since an analytical solution exists for both the steady

and transient problems. This enables the accuracy as well as the stability of numerical schemes to be

investigated.

The analytical solution for the flow of an Oldroyd B fluid in a planar channel (see Fig. 1) can easily be

found at steady state. With all derivatives in the channel direction ðxÞ set to zero, and the cross channel

velocity v ¼ 0, a parabolic velocity profile for the velocity component u, is obtained of the form

uðyÞ ¼ AðyÞ ¼ 4ð1� yÞy: ð17Þ

This is valid in a channel of height h ¼ 1 and 06 y6 h, with a maximum centerline velocity of U ¼ 1. The

elastic stresses can now be found by solving the constitutive equation using the above assumptions. This

yields:

sxx ¼ 2Weð1� bÞ ou
oy

� �2

¼ 2Weð1� bÞðA0ðyÞÞ2; ð18Þ
sxy ¼ ð1� bÞ ou
oy

� �
¼ ð1� bÞðA0ðyÞÞ; ð19Þ
syy ¼ 0: ð20Þ
With a constant pressure gradient applied, the analytical solution to the transient start-up of a channel flow

of an Oldroyd B fluid has been derived by Waters and King [33] for Re 6¼ 0. The velocity components of this

solution are given by:

uðy; tÞ ¼ U AðyÞ
"

� 32
X1
n¼1

sinðNyÞ
N 3

exp

�
� aN t
2S1

�
GN ðtÞ

#
; ð21Þ
vðy; tÞ ¼ 0; ð22Þ
Fig. 1. Poiseuille flow in a planar channel.
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where GN ðtÞ is defined as

GN ðtÞ ¼ cosh
bN t
2S1

� �
þ 1þ N 2ðS2 � 2S1Þ

bN

� �
sinh

bN t
2S1

� �
ð23Þ

and the other factors are:

N ¼ ð2n� 1Þp; ð24Þ
S1 ¼
We
Re

; ð25Þ
S2 ¼ bS1; ð26Þ
aN ¼ 1þ S2N 2; ð27Þ
bN ¼ ðð1þ S2N 2Þ2 � 4S1N 2Þ1=2: ð28Þ

The stress components are given by

sxxðy; tÞ ¼ 2ReCxyðS1; yÞ A0ðyÞ exp
�"
� t
S1

�
� 32

X1
n¼1

cosðNyÞ
N 2

IN ðtÞ
#

ð29Þ

þ 2ReA0ðyÞð1� bÞ S1A0ðyÞ
"

� 32
X1
n¼1

cosðNyÞ
N 2

HN ðtÞ
#

� 64ReA0ðyÞð1� bÞ
S1

X1
m¼1

cosðMyÞ
M2

JMðtÞ þ
2048Reð1� bÞ

S1

�
X1
n;m¼1

cosðNyÞ
N 2

cosðMyÞ
M2

KNMðtÞ þ CxxðyÞ exp
�
� t
S1

�
; ð30Þ
sxyðy; tÞ ¼
ð1� bÞ

S1
S1A0ðyÞ

"
� 32

X1
n¼1

cosðNyÞ
N 2

HN ðtÞ
#
;þCxyðyÞ exp

�
� t
S1

�
; ð31Þ

syyðy; tÞ ¼ 0;

where M ¼ ð2m� 1Þp, the function HNðtÞ is related to GN ðtÞ by

HN ðtÞ ¼
b
N

�
� aN
2S1N 3

�
GN ðtÞ þ

1

N 3
G0

NðtÞ

and Cxy and Cxx are time-independent functions defined by the requirement that sxy and sxx are zero at t ¼ 0.

Details of the other coefficients are given in [4].

The transient development of the stress can exhibit both overshoots and undershoots as it evolves to-
ward the steady-state solution. The problem has a smooth solution, being a pure transient shear flow, with

a shear boundary layer at the channel walls and no shear along the centerline. There are no geometric

singularities in the flow. Here, interest lies solely in determining the quality of the numerical solu-

tions, evolved over time, and in detecting sensitivity to numerical instability for the algorithms under

consideration.
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For b ¼ 1=9, the analytical solution displays overshoots and undershoots in the streamwise velocity

component and the stress components, as We is increased from a value of zero to unity. As We is increased
beyond unity, the velocity overshoot increases, whilst the velocity undershoot and stress overshoot/un-
dershoot are damped. Once We reaches 100 there is no velocity undershoot or stress overshoot/undershoot.

Also of interest is the relative settling times taken for velocity and stress components to settle down to their

steady-state values. For We < 1, velocity and stress components take approximately the same time to

achieve such states. However, for WeP 1, the normal stress components take longer to attain their steady-

state values as compared with the velocity components and the shear stress. Reproducing these features is a

severe test of the time accuracy of any transient algorithm, given the different time-scales involved.
4. Temporal discretization

The governing equations are discretized in time using three distinct temporal schemes. These schemes

will be compared and contrasted with respect to stability for unsteady plane Poiseuille flow.

4.1. Euler/Euler

This temporal discretization is a first-order scheme, using an Euler scheme to approximate the material
time derivatives in the momentum and constitutive equations, and also an Euler scheme for the defor-

mation terms:

• The material derivative

The Euler approximation of the material derivative of a function G is

DG

Dt
¼ oG

ot
þ u � rG � Gnþ1 �Gn

Dt
þ un � rGn: ð32Þ

• The deformation terms

An Euler approximation for the deformation terms, calculated explicitly at the old time level, is

ru � sþ s � ðruÞT � run � sn þ sn � ðrunÞT: ð33Þ
4.2. OIFS2/AB2

This scheme uses two second-order temporal discretizations. A second-order Operator Integration

Factor Splitting (OIFS) technique for the material derivatives of the velocity and the stress, and a second-

order Adams–Bashforth (AB) approximation for the deformation terms:
• The material derivative

The discretization of the material derivatives of both the velocity in the momentum equations, and the

stress in the constitutive equation, will be obtained using a second-order OIFS scheme (see [22]). The

material derivative of a function G is approximated as

DG

Dt
¼ oG

ot
þ u � rG � 1

2Dt
ð3Gnþ1 � 4~Gðtnþ1Þ þ ~~Gðtnþ1ÞÞ: ð34Þ

The approximations ~Gðtnþ1Þ and ~~Gðtnþ1Þ are the solutions at time t ¼ tnþ1 of the pure convection problems

o~G

ot
¼ �u� � r~G; t 2 ½tn; tnþ1� with ~Gðx; tnÞ ¼ GnðxÞ; ð35Þ
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and

o
~~G

ot
¼ �u� � r~~G; t 2 ½tn�1; tnþ1� with

~~Gðx; tn�1Þ ¼ Gn�1ðxÞ; ð36Þ

where u� is a second-order approximation for the velocity at intermediate time levels given by

u� ¼ ðt � tn�1Þ
Dt

un þ 1

�
� ðt � tn�1Þ

Dt

�
un�1: ð37Þ

A fourth-order explicit Runge–Kutta (RK4) method is used to solve these initial value problems. In the

RK4 method, an additional time step is required. This time step h is defined as h ¼ Dt=M , with M the
number of RK4 iterations per outer time step, and Dt ¼ tnþ1 � tn.
• The deformation terms

An explicit second-order Adams–Bashforth (AB) scheme is used to approximate the deformation terms

at the new time level t ¼ tnþ1. The scheme is given by (see Karniadakis and Sherwin [15])

Fnþ1 �
XJ�1

q¼0

bqF
nþ1�q: ð38Þ

The factor J is the order of the AB scheme. For the second-order approximation (J ¼ 2), the coefficients bq

are given by

b0 ¼ 0; b1 ¼ 3
2
; b2 ¼ �1

2
; ð39Þ

which yields the approximation

Fnþ1 � 3
2
Fn � 1

2
Fn�1: ð40Þ

This is applied to the deformation terms, where

F ¼ ðru � sþ s � ðruÞTÞ: ð41Þ
4.3. BDF2/EX2

This is another scheme that uses two second-order temporal discretizations. It comprises a second-order

Backward Differentiation Formula (BDF) for the material derivatives of the velocity and the stress, and a

second-order Extrapolation Scheme (EX) for the deformation terms:
• The material derivative

The second-order Backward Differentiation Formula, as used by Fi�etier and Deville [8], approximates

the material derivative of a function G as

DG

Dt
¼ oG

ot
þ u � rG � 3Gnþ1 � 4Gn þGn�1

2Dt
þ 2un � rGn � un�1 � rGn�1: ð42Þ

• The deformation terms

The second-order Extrapolation Scheme, as used by Fi�etier and Deville [8], approximates the defor-

mation terms as

Fnþ1 � 2Fn � Fn�1: ð43Þ



R.G.M. van Os, T.N. Phillips / Journal of Computational Physics 201 (2004) 286–314 295
4.4. The semi-discrete equations

Substituting the temporal discretizations for the material derivative and the deformation terms into the
equations at the new time level tnþ1, gives the semi-discrete equations. The general form of these equations

is:

r � unþ1 ¼ 0;

Mlu
nþ1 þrpnþ1 �r � snþ1 � br2unþ1 ¼ fnðu; sÞ;

Cls
nþ1 � 2ð1� bÞdnþ1 ¼ Hnðu; sÞ:

ð44Þ

The parameter Ml and the vector fnðu; sÞ are defined in Table 1 for the three temporal schemes. Similarly,

the parameter Cl and the tensor Hnðu; sÞ are defined in Table 2.
5. Spectral element discretization

The spectral element method (see Maday and Patera [21], for example) is applied to the weak formu-
lation of the semi-discrete equations (44). These equations constitute a generalized three-field Stokes

problem. Suitable function spaces are chosen for the dependent variables. The velocity is chosen to be in a

subspace, V, of ½H 1ðXÞ�2 whose elements satisfy the prescribed velocity boundary conditions. The ap-

propriate spaces for pressure and stress are:

P ¼ ½L2ðXÞ�;
T ¼ ½L2ðXÞ�4s :

For this choice of function spaces, Gerritsma and Phillips [12] have shown that the integrals in the weak

formulation are well-defined for the Stokes problem. This choice of function spaces is not appropriate, of
course, for the weak formulation of the full problem. The resulting weak formulation of (44) is then: Find

ðunþ1; pnþ1; snþ1Þ 2 V�P�T, such that:
Table 1

The parameter Ml and the vector fnðu; sÞ for the three temporal schemes

Scheme Ml fnðu; sÞ

Euler/Euler Re
Dt ReðunDt � un � runÞ

OIFS2/AB2 3Re
2Dt

Re
2Dt ð4~uðtnþ1Þ � ~~uðtnþ1ÞÞ

BDF2/EX2 3Re
2Dt

Re
2Dt ð4un � un�1Þ � Reð2un � run � un�1 � run�1Þ

Table 2

The factor Cl and the tensor Hnðu; sÞ for the three temporal schemes

Scheme Cl Hnðu; sÞ

Euler/Euler 1þ We
Dt WeðsnDt � un � rsn þ FnÞ

OIFS2/AB2 1þ 3We
2Dt

We
2Dt ð4~sðtnþ1Þ � ~~sðtnþ1ÞÞ þ We

2
ð3Fn � Fn�1Þ

BDF2/EX2 1þ 3We
2Dt

We
2Dt ð4sn � sn�1Þ þ Weð2Fn � Fn�1Þ
�Weð2un � rsn � un�1 � rsn�1Þ

The function F represents the deformation terms: F ¼ ðru � sþ s � ðruÞTÞ:
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dðunþ1; qÞ ¼ 0 8q 2 P;

Mlcðunþ1; vÞ þ beðunþ1; vÞ � d�ðpnþ1; vÞ þ bðsnþ1; vÞ ¼ ðfn; vÞ 8v 2 V;

Claðsnþ1; rÞ � ð1� bÞb�ðunþ1; rÞ ¼ ðHn; rÞ 8r 2 T;

ð45Þ

where the bilinear forms að�; �Þ, etc., are defined by:

aðs; rÞ ¼
Z
X
s : rdX;
bðs; vÞ ¼ �
Z
X
r � s : vdX ¼

Z
X
s : rvdX;
b�ðu; rÞ ¼
Z
X
ru : rdX;
cðu; vÞ ¼
Z
X
u � vdX;
dðu; qÞ ¼
Z
X
r � uqdX;
d�ðp; vÞ ¼ �
Z
X
rpvdX ¼

Z
X
pr � vdX;
eðu; vÞ ¼ �
Z
X
r2u : vdX ¼

Z
X
ru : rvdX:

The bilinear forms að�; �Þ, bð�; �Þ, cð�; �Þ, dð�; �Þ and eð�; �Þ induce continuous linear operators A : T ! T0,

B : T ! V0, C : V ! V0, D : T ! P0 and E : V ! V0, such that:

½As; r� ¼ aðs; rÞ 8s; r 2 T;
½Bs; v� ¼ bðs; vÞ 8s 2 T 8v 2 V;
½B�u; r� ¼ b�ðu; rÞ 8u 2 V 8r 2 T;
½Cu; v� ¼ cðu; vÞ 8u; v 2 V;
½Du; q� ¼ dðu; qÞ 8u 2 V 8q 2 P;
½D�p; v� ¼ d�ðp; vÞ 8p 2 P 8v 2 V;
½Eu; v� ¼ eðu; vÞ 8u; v 2 V:

In this notation, the dual problem to (45) is:

Dunþ1 ¼ 0; in P0;
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ðMlC þ bEÞunþ1 � D�pnþ1 þ Bsnþ1 ¼ f; in V0; ð46Þ
ClAsnþ1 � ð1� bÞB�unþ1 ¼ H; in T0:

In the spectral element method, finite dimensional approximations to these operators are constructed.

The spatial discretization of the physical domain X of the planar channel, involves dividing X into K non-

overlapping spectral elements Xk, 16 k6K, such that [K
k¼1Xk ¼ X. We denote by PN ðXkÞ the space of all

polynomials on Xk of degree less than or equal to N , and further define PN ðXÞ ¼ f/ : /jXk
2 PN ðXkÞg. Each

of the spectral elements is mapped onto a parent element D ¼ ½�1; 1� � ½�1; 1�, where each point ðn; gÞ 2 D
is associated with a point ðxðn; gÞ; yðn; gÞÞ 2 Xk. The dependent variables are approximated on D using

Lagrangian interpolants of degree N in both spatial directions, based on the Gauss–Lobatto–Legendre

points. This creates a Gauss–Lobatto–Legendre grid inside the spectral elements. Fig. 2 shows a spectral
element mesh for a planar channel with K ¼ 8 and approximating polynomials of degree N ¼ 4 within each

element.

The discrete approximation spaces must satisfy a compatibility condition to ensure that the problem is

well-posed. For spectral elements Maday et al. [20] have shown that this LBB condition is satisfied when the

velocity approximation space is the polynomial space PN ðXÞ, and the pressure approximation space is

PN�2ðXÞ. A Gauss–Lobatto quadrature rule will be used to integrate the velocities, whereas a Gauss

quadrature rule integrates the pressures. The stress will be approximated by polynomials in the space PN ðXÞ
as well, with the difference that stresses are allowed to be discontinuous over element boundaries. Gerritsma
and Phillips [11] have shown that this is a sufficient condition for stability of the corresponding three-field

Stokes problem.

5.1. The discrete equations

Discretizing the weak formulation using spectral approximations, yields the following set of discrete

equations:

DNu
nþ1
N ¼ 0;
ðMlCN þ bENÞunþ1
N � DT

Np
nþ1
N þ BNs

nþ1
N ¼ fN ; ð47Þ
ClANs
nþ1
N � ð1� bÞBT

Nu
nþ1
N ¼ HN ;

where DN and BN are the discrete divergence operators acting on velocity and stress, respectively, DT
N and BT

N

are gradient operators acting on pressure and velocity, EN is the discrete Laplace operator, CN and AN are

the discrete velocity and stress mass matrices, and fN and HN denote the discrete forms of the right-hand

sides of (46). Combining the momentum equation and the constitutive equation yields

�DT
Np

nþ1
N þ HNu

nþ1
N ¼ fN � 1

Cl

BNA�1
N HN : ð48Þ
Fig. 2. Spectral element mesh for a planar channel with K ¼ 8 and N ¼ 4.
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In which HN is the discrete Helmholtz-like operator, given by

HN ¼ ð1� bÞ
Cl

BNA�1
N BT

N þMlCN þ bEN : ð49Þ

Eliminating the velocity using the discrete continuity equation, yields the equation that the pressure has to

satisfy, i.e.

DNH�1
N DT

Np
nþ1
N ¼ �DNH�1

N fN

�
� 1

Cl

BNA�1
N HN

�
: ð50Þ

The operator UN ¼ DNH�1
N DT

N is known as the Uzawa operator. Simplified, the pressure equation may be

written as

UNp
nþ1
N ¼ bN ; ð51Þ

where bN is the right-hand side of (50).

5.2. Boundary conditions

No-slip and no-penetration conditions are applied on the walls y ¼ 0 and y ¼ 1. To obtain the solution

of the steady problem using the time-dependent algorithm the steady parabolic velocity profile (17) is
prescribed at inflow and outflow and the steady values of the stress components given by (18)–(20) are

prescribed at inflow. Elsewhere in the domain zero initial conditions are used for velocity and stress.

For the transient start-up problem, time-dependent boundary conditions based on the analytical solu-

tion of Waters and King [33] given in Section 3 are applied at inflow. Elsewhere the initial conditions on

velocity and stress are set to be zero.

Note that for both the steady and transient problems Dirichlet conditions on the stress at inflow are only

prescribed when the Weissenberg number is nonzero.

5.3. Preconditioned iterative methods

To solve the pressure equation (51), a nested preconditioned conjugate gradient (PCG) method is used

(see Deville et al. [5], for example). This requires the inversion of both the Uzawa operator U ¼ DH�1DT

and the Helmholtz operator H . The inversion of the Helmholtz operator is nested within the inversion of

the Uzawa operator.

Since the Uzawa operator is only positive semi-definite, problems arise when trying to reach convergence

in the PCG method when a tolerance of less than 10�14 is prescribed. The tolerance becomes harder to
attain with increasing Weissenberg number. The indefiniteness of the Uzawa operator can be removed by

adding the domain integral of the pressure to the right-hand side of the continuity equation. The Uzawa

operator for the modified problem is then positive definite. This modification of the continuity equation

ensures that the pressure approximation has a zero mean value.

The pressure mass matrix is used as a preconditioner for the Uzawa operator. The preconditioner used

for the Helmholtz operator is based on an overlapping Schwarz method developed by Fischer [10] for

spectral element discretizations.

The zero volume of pressure condition enforces the continuity constraint to be satisfied at all iterations
within the PCG iteration. This is done by replacing the continuity equation by

r � u ¼ �a
Z
X
pdX; ð52Þ
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where a is a positive constant. Integrating this equation over X and using Green’s theorem, one can show

that Z
X
pdX ¼ 0: ð53Þ

So this formulation will automatically ensure that p 2 L2
0ðXÞ, as well as leading to a better conditioned

problem in the sense that the condition number of the discrete Uzawa operator is lower than that for the

original formulation for a range of values of a. In evaluating the right-hand side of (47) the pressure is

integrated over all elements X in the computational domain. After discretization of the integral, the

modified discrete continuity equation is

DNuN ¼ �aQNpN ; ð54Þ

where QN is a matrix of rank one. This replaces the first equation in (47). The pressure equation (51) will

now be of the form

ðUN þ aQN ÞpN ¼ bN : ð55Þ

The efficiency of the algorithm has been tested for different values of a, for the channel flow problem

described in Section 6.1.1. The only difference is that the convergence criterion for the outer PCG iteration

to invert the Uzawa operator is set to 10�20 and the convergence criterion for the inner PCG iteration to

invert the Helmholtz operator is set to 10�24. Table 3 and Fig. 3 show that there is an optimum value of a,
for the efficiency of the Uzawa inversion, although the algorithm behaves well for a wide range of values of
a. The optimum value of a may vary when either the problem or the convergence criteria are changed. The

value used for the remainder of this paper is a ¼ 1.

5.4. Preconditioners for the Uzawa operator

Three types of preconditioner have been tested for the Uzawa operator. These are:

• PU ¼ I , the unit matrix, which means no preconditioner is used.

• PU ¼ Mp, the pressure mass matrix.
• P�1

U ¼ C�1
P ¼ ðð1�bÞ

Cl
þ bÞM�1

p þMlðDC�1DTÞ�1
, a preconditioner based on work by Cahouet and Chabard

[3], and extended to viscoelastic models by Escriva et al. [7].

The preconditioner that was developed by Cahouet and Chabard [3] is based on the operator identity

�r � ðaI� br2Þ�1r ¼ ðbI� aðr2Þ�1Þ�1
; ð56Þ

where r � ðReDt I�r2Þ�1r arises from the continuous Navier–Stokes equations. The preconditioner was
constructed so that it matches the asymptotic behaviour of the Uzawa operator in the steady Stokes and

high Reynolds number limits. The appropriate preconditioner is

P�1
U ¼ M�1

p þ Re
Dt

ðDC�1DTÞ�1
: ð57Þ
Table 3

Average number of iterations in the Uzawa inversion within one time-step for different values of a

a 10�6 10�4 10�3 5� 10�3 10�2 10�1 100 102

ItU 132.64 119.68 115.54 114.07 114.43 117.79 129.21 147.89
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Fig. 3. Average number of iterations in the Uzawa inversion within one time-step as a function of a.
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Escriva et al. [7] adopted this strategy for viscoelastic problems. Since the factors a and b in (56) were

found to be

a ¼ Re
Dt

and b ¼ bþ 1� b
We
Dt þ 1

; ð58Þ

the following preconditioner was proposed:

P�1
U ¼ b

�
þ 1� b

We
Dt þ 1

�
M�1

p þ Re
Dt

ðDC�1DTÞ�1
: ð59Þ

This preconditioner may be effective in terms of reduction of numbers of iterations. However, to calculate

the preconditioner itself, a further PCG iteration has to be used to invert the Laplacian, which in itself is

very time consuming.

5.5. Preconditioners for the Helmholtz operator

The following two preconditioners have been tested for the inversion of the Helmholtz operator:

• PH ¼ I , the unit matrix, which means no preconditioner is used.

• PH ¼ SP, the overlapping Schwarz preconditioner, which is based on the classical additive Schwarz method

developed by Dryja and Widlund [6].

The overlapping Schwarz preconditioner is based on solutions of similar local problems using finite

element approximations on subdomains that overlap the spectral elements. In a problem with K spectral
elements Xk, k ¼ 1; . . . ;K, these subdomains ~Xk are the existing spectral elements extended by a constant

number of Gauss–Lobatto–Legendre nodes in each direction into adjacent elements. Homogeneous Di-

richlet conditions are assumed on the boundaries of these extended subdomains. Throughout this paper,

the overlap will comprise two nodes. To provide the global coupling in the preconditioner, the solution on
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one extra domain, known as the coarse grid, is needed. The coarse grid, also known as the skeleton spectral

element grid, consists of the vertices of the spectral element mesh. The preconditioner may be written as

P�1
H ¼ RT

0A
�1
0 R0 þ

XK
k¼1

RT
k A

�1
k Rk; ð60Þ

where Ak is the stiffness matrix corresponding to the finite element approximation of the problem on the

subdomain ~Xk, and Rk and RT
k are the restriction and interpolation operators, respectively, that map the

spectral element space onto the finite element space and vice versa. The subscript 0 refers to the coarse grid

problem.
6. Results

In this section the performance and efficiency of the preconditioners used to invert the Uzawa and

Helmholtz operators are discussed. Next, a study of the steady Poiseuille flow is given, followed by results

for the startup of plane Poiseuille flow. Finally, the effects on the numerical solution due to mesh refine-

ment, the value of the parameter b, the timestep Dt, different temporal discretization schemes and the length

of the channel are discussed.
6.1. Steady channel flow

To find steady solutions to the Poiseuille flow in a channel, two approaches are used in this paper. In

this section, the fully developed flow is prescribed as a steady boundary condition. Starting with zero

initial conditions, the solution will converge to the fully developed flow in the whole channel, using a

transient algorithm. The transient development from the initial conditions is in this case only a means of

finding the steady-state solution, and the time dependent start-up of the flow itself has no physical in-

terpretation. In Section 6.2, the Waters and King solution will be used as a transient boundary condition.

This time dependent solution may be physically interpreted as the start-up of Poiseuille flow of an Oldroyd
B fluid.

For the steady channel flow, a parabolic profile is used to prescribe the steady velocity boundary

condition at both inflow and outflow. The corresponding extra stress profiles are prescribed as

boundary conditions only at the inflow of the channel. A no-slip condition is applied at the walls of the

channel y ¼ 0, and y ¼ h. Zero initial conditions for both velocity and stress are assumed inside the

domain.

6.1.1. Performance and efficiency of preconditioners

We begin our study of steady channel flow by investigating the performance of the different precondi-

tioners described in Sections 5.4 and 5.5, for different values of N , K, Re and We for a channel with L ¼ 32

and h ¼ 1. The boundary conditions are based on the parabolic velocity profile u ¼ �6yðy � 1Þ.
The Euler/Euler temporal scheme is used, with a timestep Dt ¼ 0:1. The convergence criteria for the PCG

algorithms for the Uzawa and the Helmholtz operators are set to be 10�12 and 10�16, respectively. The

solution is assumed to be converged when the L2-norm of the difference between two successive velocity and

stress approximations is less than 10�6. These L2-norms are defined by:

jjDujjL2 ¼
Z
X
junþ1

�
� unj2 þ jvnþ1 � vnj2 dX

�1=2
; ð61Þ
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jjDsjjL2 ¼
Z
X
jsnþ1

xx

�
� snxxj

2 þ jsnþ1
yy � snyy j

2 þ 2jsnþ1
xy � snxy j

2
dX

�1=2
: ð62Þ

Summarizing, the parameters that have been used to test the performance of the preconditioners are (unless
otherwise stated): N ¼ 8, K ¼ 4, Re ¼ 1, We ¼ 0:1, b ¼ 1=9, Dt ¼ 0:1, L ¼ 32, h ¼ 1. The distribution of the

four equally sized elements is as is depicted in Fig. 6.

In Tables 4–7 the efficiency of the various preconditioners is indicated using three quantities. These are:

• The average number of iterations per time step, ItU, needed to invert the Uzawa operator.

• The average number of iterations, ItH, needed to invert the Helmholtz operator, averaged over the total

number of Helmholtz inversions. Since the Helmholtz operator needs to be inverted in every Uzawa it-

eration, the total number of Helmholtz inversions equals the number of time steps times the average

number of Uzawa iterations per time step, ItU.
• The average time to invert the Uzawa operator is given by DtU, in seconds. The computations are run on

a Compaq XP1000 workstation.

The efficiency of the Cahouet–Chabard based preconditioner CP for the Uzawa operator, is clear in

terms of reduction of the number of iterations in the Uzawa PCG iteration. However, the calculation of this

preconditioner, involves the inversion of the pseudo-Laplacian ðDC�1DTÞ�1
. The number of iterations

needed for this PCG inversion increases dramatically with increasing polynomial order, N , and number of

elements, K. This reduces the performance of this preconditioner considerably. A solution might be to

invert the Laplacian in pressure space Ep, which is cheaper, but may decrease the performance of the
preconditioner in terms of iterations for the Uzawa iteration. In order to calculate Ep, derivatives of the test

functions in pressure space are needed. This is beyond the scope of this paper.

Because of the poor performance of the Cahouet–Chabard preconditioner, the second choice of pre-

conditioner for the Uzawa operator, the pressure mass matrix M�
p will be used throughout the remainder of

this paper. This preconditioner still gives a considerable reduction in the number of Uzawa iterations, and it

is efficient since it only involves the inversion of a diagonal matrix.

The advantage of the overlapping Schwarz preconditioner for the Helmholtz operator is obvious. In all

cases it provides reductions in both the number of iterations in the Helmholtz PCG loop and the time to
Table 4

Performance of the preconditioners with increasing polynomial order N

N ItU ItH DtU PU PH

4 23.29 21.50 0.411 CP SP
4 31.39 21.18 0.211 M�

p SP
4 37.32 22.01 0.258 I SP
4 31.39 31.00 0.111 M�

p I
4 37.43 32.40 0.139 I I

8 49.96 36.13 �80 CP SP
8 76.89 35.25 2.646 M�

p SP
8 138.50 36.30 4.874 I SP
8 75.57 141.26 4.016 M�

p I
8 137.71 145.16 7.384 I I

12 70.61 47.52 �1800 CP SP
12 103.18 48.64 13.37 M�

p SP
12 231.04 44.95 25.599 I SP
12 103.54 308.41 29.954 M�

p I
12 231.64 284.51 62.513 I I

To achieve a converged solution, 28 time steps were needed.



Table 5

Performance of the preconditioners with increasing number of elements K

K ItU ItH DtU PU PH

4 49.96 36.13 �80 CP SP
4 76.89 35.25 2.646 M�

p SP
4 138.50 36.30 4.874 I SP
4 75.57 141.26 4.016 M�

p I
4 137.71 145.16 7.384 I I

8 73.96 41.54 �320 CP SP
8 109.71 41.60 8.016 M�

p SP
8 189.18 38.77 13.080 I SP
8 106.32 165.35 12.896 M�

p I
8 188.39 152.97 21.336 I I

The 4 elements are ordered as in Fig. 6, the 8 elements are ordered as in Fig. 2. A converged solution was obtained in 28 time steps.

Table 6

Performance of the preconditioners with different Reynolds number Re

Re ItU ItH DtU PU PH

1 49.96 36.13 �80 CP SP
1 76.89 35.25 2.646 M�

p SP
1 138.50 36.30 4.874 I SP
1 75.57 141.26 4.016 M�

p I
1 137.71 145.16 7.384 I I

10 69.00 26.55 �110 CP SP
10 155.31 26.07 4.271 M�

p SP
10 230.54 26.30 6.295 I SP
10 153.04 80.37 5.016 M�

p I
10 229.92 80.55 7.533 I I

Converged solutions were obtained in 28 and 26 time steps for Re ¼ 1 and Re ¼ 10, respectively.

Table 7

Performance of the preconditioners with different Weissenber number We

We ItU ItH DtU PU PH

0 46.57 39.46 �75 CP SP
0 64.14 38.97 2.376 M�

p SP
0 129.43 39.02 4.747 I SP
0 65.00 153.44 3.626 M�

p I
0 130.29 155.02 7.262 I I

0.1 49.96 36.13 �80 CP SP
0.1 76.89 35.25 2.646 M�

p SP
0.1 138.50 36.30 4.874 I SP
0.1 75.57 141.26 4.016 M�

p I
0.1 137.71 145.16 7.384 I I

The parameter b is set to zero. 28 time steps were needed to achieve a converged solution for We ¼ 0:1, 7 time steps when We ¼ 0.
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reach convergence. Changes in the parameter b, the timestep Dt, the temporal discretization scheme and the

length of the channel may have a considerable effect on the maximum attainable Weissenberg number. The

results are discussed below.
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6.1.2. Time integration method of material derivative/deformation terms

For the Oldroyd B and UCM models different time integration methods have been tested. The following

parameters are used: N ¼ 4, K ¼ 1, Re ¼ 0 and Re ¼ 0:1, with a timestep Dt ¼ 0:1. The channel length is
L ¼ 64, and height h ¼ 1. The boundary conditions are based on the velocity profile

u ¼ �4yðy � 1Þ; y 2 ½0; 1�.
The convergence criteria jjDujjL2 and jjDsjjL2 norms are set to 10�8. When these criterion are met, the

Weissenberg number is increased, according to:

We ¼ Weþ 0:05 if We6 1; ð63Þ
We ¼ We � 1:1 if We > 1: ð64Þ

The convergence criteria on the residuals of the preconditioned conjugate gradient loops for the in-

version of the Uzawa and Helmholtz operators are set to 10�9 and 10�14, respectively.
In Table 8, the maximum attainable Weissenberg numbers for the Euler/Euler method and for BDF2/

EX2 and OIFS2/AB2 are presented for the UCM model and for an Oldroyd B model with b ¼ 1=9. The
results in this table show that a nonzero Reynolds number clearly has a stabilizing effect on the calculations

for the UCM model and the Oldroyd B model.

The calculations performed for the UCM model show that a larger maximum Weissenberg number can

be achieved when a first-order temporal scheme is used rather than a second-order scheme. We do not have

an explanation for this for the steady problem at the moment. However, we speculate that it is related to the

relative regularity of the solutions to the UCM and Oldroyd B problems as indeed it is for the corre-
sponding inertial transient problems.

6.1.3. Parameter b
Using the Euler/Euler scheme to approximate the material derivative and deformation terms, the Old-

royd B model has been tested for b ¼ 0 (UCM), b ¼ 1=9 and b ¼ 0:9. The convergence criteria for jjDujjL2
and jjDsjjL2 are set to 10�8, and for the inversion of the Helmholtz operator, a preconditioner based on an

overlapping Schwarz method has been used, with an overlap of two nodes. The mesh is defined by N ¼ 4

and K ¼ 8, ordered as in Fig. 2. The timestep is Dt ¼ 0:1, the channel length is L ¼ 64, and the height h ¼ 1,
with a parabolic inflow profile: u ¼ �4yðy � 1Þ; y 2 ½0; 1�. The convergence criteria are 10�9 for the Uzawa

loop, and 10�14 for the Helmholtz loop.

In Table 9, the maximum attainable Weissenberg numbers for Reynolds numbers of Re ¼ 0 and Re ¼ 1

are given, with b ¼ 0 (UCM) and b ¼ 1=9 and b ¼ 0:9. The influence of changes in the Reynolds number
Table 8

Maximum attainable Weissenberg numbers for different temporal discretizations and models, for a one element mesh with N ¼ 4 and

L ¼ 64

Wemax (Re ¼ 0) Wemax (Re ¼ 0:1)

UCM

Euler/Euler 8.95 17.45

OIFS2/AB2 6.73 8.95

BDF2/EX2 5.05 8.95

Oldroyd B

Euler/Euler 28.10 34.00

OIFS2/AB2 28.10 34.00

BDF2/EX2 28.10 34.00



Table 9

Maximum attainable Weissenberg numbers for different values of b and Re, on a mesh with K ¼ 8, N ¼ 4 and L ¼ 64

Wemax

Re ¼ 0 b ¼ 0 1.77

b ¼ 1=9 1.77

Re ¼ 1 b ¼ 0 1.77

b ¼ 1=9 1.77

b ¼ 0:9 3.14
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and the parameter b is less obvious than in the results for the one element case which are presented in Table

8. A high value of b however, clearly provides a more stable problem.

6.1.4. Timestep

For the Oldroyd B model with b ¼ 1=9, Re ¼ 1, and We ¼ 0:5, different values for the timestep are tested.

The other parameters are the same as in Section 6.1.3. Convergence for the norms of the stresses are shown

in Fig. 4, for Dt ¼ 10�1 and Dt ¼ 10�3. Whereas the convergence of the stress approximation using the
larger time step is predominantly monotonic until machine precision is reached, the convergence history for

the smaller time step is more irregular and is undulatory in behaviour.

6.1.5. Number of elements and order of polynomial approximation

For the UCM (b ¼ 0) model under the creeping flow assumption (Re ¼ 0), different values for the

number of elements K and the polynomial order N are tested. All other values are the same as in Section

6.1.3. For one element no Schwarz overlap based preconditioner is possible, so for the Helmholtz operator

for one element, the identity is used (no preconditioner) in the PCG iteration.
Maximum attainable Weissenberg numbers are given in Table 10, for K ¼ 1 with both N ¼ 4 and N ¼ 8,

and K ¼ 8 (as in Fig. 2), also with both N ¼ 4 and N ¼ 8. The ability of the model to produce valid results

at high Weissenberg numbers decreases with increasing the mesh resolution.
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Fig. 4. Convergence of norms of stresses for (a) Dt ¼ 10�1 and (b) Dt ¼ 10�3, for an Oldroyd B model with b ¼ 1=9, Re ¼ 1, and

We ¼ 0:5, on a mesh with K ¼ 8, N ¼ 4 and L ¼ 64.



Table 10

Maximum attainable Weissenberg numbers for different polynomial orders and number of elements, for a UCM model with Re ¼ 0

Wemax

N ¼ 4 K ¼ 1 7.59

K ¼ 8 1.77

N ¼ 8 K ¼ 1 3.80

K ¼ 8 0.50
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Fig. 5 shows a plot of jjDsjjL2 , against the non-dimensional time, for the mesh with N ¼ 8 and K ¼ 8.

Only the last three Weissenberg numbers are plotted. The maximum attainable Weissenberg number is

We ¼ 0:50, and any higher value causes the solution to diverge.

6.1.6. Channel length

For an Oldroyd B model with b ¼ 1=9, with a Reynolds number of Re ¼ 1, different values for the length

of the channel are tested. All other values are the same as before in the list in Section 6.1.3.
Maximum attainable Weissenberg numbers are given in Table 11. When the length of the channel is

shortened, this maximum Weissenberg number decreases, notably in an almost linear fashion. This may

represent the same behaviour of decreasing Wemax with increasing mesh resolution, since a shorter channel is

effectively a refinement of the mesh in the lengthwise direction.

6.2. Transient channel flow

Solutions to the planar start-up of channel flow of the Oldroyd B model, are calculated using the Waters
and King solution for the start-up of Poiseuille flow as transient boundary conditions. The velocity solution

is used at inflow and outflow, the stress solution only at inflow. All other initial conditions are zero.
time

||∆
τ|

|

0 40 80 120
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10-7

10-6

10-5

10-4
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100

We=0.45

We=0.55

We=0.50

Fig. 5. Convergence plot of jjDsjjL2 , for a UCM model with Re ¼ 0, on a mesh with K ¼ 8, N ¼ 8 and L ¼ 64. Only the plots for the

highest three Weissenberg numbers are shown.



Table 11

Maximum attainable Weissenberg for different channel lengths on a mesh with K ¼ 8, N ¼ 4, and L ¼ 64, for an Oldroyd B model with

b ¼ 1=9, Re ¼ 1

Channel length Wemax

8 0.25

16 0.45

32 0.90

64 1.77
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The performance of the algorithm is shown by solving the transient start-up problem for an Oldroyd B

model with b ¼ 1=9. The Weissenberg and Reynolds numbers are fixed at We ¼ 1 and Re ¼ 1, the timestep

is 10�2, and h ¼ 1. Convergence of the solution to the exact Waters and King solution is shown in Tables

12–15, for different values of N , L, Kx and Ky . Here Kx and Ky denote the number of spectral elements in the

lengthwise and cross channel directions, respectively.
Table 12

Convergence behaviour for varying values of Kx and L, at a fixed value of N ¼ 6

Kx � Ky N L ¼ 8 L ¼ 16 L ¼ 32 L ¼ 64

1� 2 6 C C C C

2� 2 6 4.10 10.80 C C

3� 2 6 2.10 5.30 22.00 C

4� 2 6 1.00 3.50 11.20 C

A converged solution is denoted with a C. If the solution does not converge, the approximate time at which the solution diverges is

given.

Table 13

Convergence behaviour for varying values of Kx and L, at a fixed value of N ¼ 4

Kx �Ky N L ¼ 8 L ¼ 16 L ¼ 32 L ¼ 64

2� 2 4 12.10 C C C

4� 2 4 3.00 12.60 C C

6� 2 4 1.30 5.60 C C

8� 2 4 0.90 3.00 13.00 C

A converged solution is denoted with a C. If the solution does not converge, the approximate time at which the solution diverges is

given.

Table 14

Convergence behaviour for varying values of Ky and L, at a fixed value of N ¼ 6

Kx �Ky N L ¼ 8 L ¼ 16 L ¼ 32

2� 1 6 5.90 20.20 C

2� 2 6 4.10 10.80 C

2� 3 6 3.90 10.90 C

2� 4 6 3.90 11.00 C

A converged solution is denoted with a C. If the solution does not converge, the approximate time at which the solution diverges is

given.



Table 15

Convergence behaviour for varying values of Ky and L, at a fixed value of N ¼ 4

Kx �Ky N L ¼ 8 L ¼ 16

2� 1 4 24.00 C

2� 2 4 12.10 C

2� 3 4 11.00 C

2� 4 4 11.00 C

A converged solution is denoted with a C. If the solution does not converge, the approximate time at which the solution diverges is

given.
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From Table 12 it can be concluded that at a fixed channel length, increasing Kx results in poorer con-

vergence behaviour. This is also the case if Kx is kept fixed, and the channel length is decreased. At a lower

approximation order N , Table 13 shows that convergence is reached easier at the same values for Kx and L.
This reflects the findings for the steady channel flow where either a decrease in channel length or an increase

in the value of Kx or N resulted in lower maximum attainable Weissenberg numbers.

The influence of the number of elements in the cross channel direction, Ky , on the convergence behaviour

is considerably weaker, as can be seen in Tables 14 and 15. Although divergence sets in slightly later when

Ky ¼ 1 only, no examples have been found where the choice of Ky influenced whether or not the solution

eventually diverged. The results in Table 15, at a lower approximation order N , again show better con-

vergence behaviour than the results at higher N in Table 14.

The exact solution that is prescribed at inflow, according to the Waters and King solution, is compared
to the solution that is calculated at the Gauss–Lobatto point on the penultimate vertical gridline, i.e., one

before the outflow of the channel. Fig. 6 shows the nodes A and B where the velocity is monitored, and the

nodes C and D where the stresses are monitored.

The time-dependent solutions at these two points are superimposed in Fig. 7, where Ky ¼ 2, Kx ¼ 4,

L ¼ 64 and N ¼ 6. Slight differences in the peak of the time-dependent solution can be observed. The

spectral approximation of sxx overshoots the first peak in the exact solution by �2%. The spectral ap-

proximation of u, undershoots the first peak in the exact solution by less than 1%. No such under- or

overshoots are observed in the comparison of the numerical and exact values for sxy . Apart from these
differences, the curves are hardly distinguishable.

The length of the channel is now halved to L ¼ 32, keeping Ky , Kx and N fixed. As can be seen in Table

12, the solution to this problem diverges at around t ¼ 11:20. Fig. 8 shows this typical divergence behaviour
of the numerical solution away from the exact solution. Although the transient numerical solution seems to

follow the exact solution and to settle down to the steady-state solution, dramatic divergence sets in after a

certain number of iterations. With all other parameters fixed this happens when either the channel is

shortened or Kx is increased or N is increased. All of these actions represent refinement of the mesh in the

lengthwise direction. Decreasing the timestep might delay the divergence slightly, but does not change the
overall result.
A
B

D
C

Fig. 6. The nodes where the velocity component u and the stress components sxx and sxy are monitored, on a mesh with Kx ¼ 2, Ky ¼ 2

and N ¼ 4.



Fig. 7. Transient solution for a channel with K ¼ 8 elements, with a distribution Kx ¼ 4, Ky ¼ 2 and N ¼ 6, for We ¼ 1 and Re ¼ 1.
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On meshes with Kx ¼ 1, converged solutions can be found for higher Weissenberg numbers. This seems

to suggest that the spatial discretization and, in particular, the presence of spectral element interfaces in

the streamwise direction is partially responsible for the onset of spurious instabilities. Fi�etier [9] showed

that mesh discretization has a strong impact on the location of the eigenvalues of the associated gen-

eralized eigenvalue problem and therefore on numerical stability. This seems to be in agreement with

statements made by Beris and Sureshkumar [32] and Wilson et al. [34] about the generation of spurious

oscillations caused by the inadequate resolution of the continuous spectrum. Lozinski and Owens ob-
served no limit on the critical Weissenberg number when solving this problem using a single spectral

element. However, unlike the numerical simulations of Fi�etier and Deville [8] and those under consid-

eration in the present article, periodic boundary conditions were applied across the channel. Therefore, it

is impossible to make a direct comparison with this work. However, we should comment that, in the



Fig. 8. Typical divergence of the numerical solution from the exact solution of a transient start-up of a channel flow. Divergence at

around t ¼ 11:20.

310 R.G.M. van Os, T.N. Phillips / Journal of Computational Physics 201 (2004) 286–314
context of spectral methods, the imposition of periodic boundary conditions generally leads to the at-

tainment of a higher critical value of the Weissenberg number compared with the imposition of Dirichlet

conditions.

Converged solutions have been obtained for the Oldroyd B model (b ¼ 1=9) for We ¼ 10 and We ¼ 20

with Re ¼ 1 on a mesh with Kx ¼ 1, Ky ¼ 1, L ¼ 64, N ¼ 4 and Dt ¼ 10�2. Figs. 9 and 10 show the Waters

and King solution at the points A and B, compared to the numerical solution at points B and D for We ¼ 10
and We ¼ 20, respectively. A very clear overshoot can be observed for sxx, but the profiles for u and sxy are
hardly distinguishable. The normal stress sxx takes considerably longer (around a factor of 10 for We ¼ 20)

to reach its steady-state value compared with u and sxy and dominates the shear stress in absolute value. The

same converged solutions have been found on meshes with Kx ¼ 1, Ky ¼ 4. Again, the value of Ky does not



Fig. 9. Transient solution for a channel with K ¼ 1 elements, with N ¼ 4, for We ¼ 10 and Re ¼ 1.
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seem to play an important role, and negligible difference is observed between the transient numerical so-

lutions shown in Figs. 9 and 10 for Ky ¼ 1 and those obtained using Ky ¼ 4. The same is true for the

comparison of solutions obtained by the first-order Euler/Euler temporal scheme, and the second-order
OIFS2/AB2 scheme.

Finally, we comment on alternative implicit schemes for solving this problem. A fully implicit algo-

rithm in which the nonlinear terms were treated iteratively was also implemented. No substantial change

in the critical value of the Weissenberg number was observed for either the steady or the transient

problem. Fi�etier and Deville [8] observed similar behaviour when a fully implicit unsteady solver was

used. The problem of spurious oscillations in the solution caused by the inadequate spatial resolution of

the continuous spectrum seems to dominate the temporal stability of explicit and implicit schemes

to such an extent that the enhanced stability properties one would expect of implicit schemes are
imperceptible.



Fig. 10. Transient solution for a channel with K ¼ 1 element, with N ¼ 4, for We ¼ 20 and Re ¼ 1.
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7. Conclusions

In this paper, steady and transient solutions to the planar Poiseuille flow of Oldroyd B fluids have been
calculated and analyzed with respect to stability using a spectral element technique. The spectral element

technique developed here incorporates a three-field formulation of the problem in terms of velocity,

pressure and extra-stress, a discontinuous extra-stress approximation, a modified continuity equation that

ensures that the zero mean condition on pressure is satisfied automatically and a Cahouet–Chabard pre-

conditioner for the Uzawa operator that has been modified for viscoelastic flows. For the transient start-up

of plane Poiseuille flow of an Oldroyd B fluid, a comparison has been made between the numerical ap-

proximation and the analytical solution of Waters and King [33].

The performance of three different temporal discretization schemes has been compared. When the
Oldroyd B model is reduced to the UCM model, by setting b ¼ 0, the first-order method performs better
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than the two second-order methods. The explanation for this may be the regularity of the true solution in

time but this is an issue that is currently under investigation. As expected, the numerical solution of the

planar Poiseuille flow becomes more stable when the parameter b is increased and when a nonzero Rey-
nolds number is chosen. Increasing the order of the numerical approximation results in a decrease in the

critical value of the Weissenberg number. The same behaviour is observed when the length of the channel is

shortened, or the number of elements in the lengthwise direction is increased. Increasing the number of

elements in the cross channel direction does not influence the stability of the scheme. Apparently, any type

of refinement in the lengthwise direction decreases the maximum attainable Weissenber number, whereas

this number is insensitive to refinement in the cross channel direction. This is in agreement with the findings

of Fi�etier and Deville [8].
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